Neural Networks: Neural networks are a computational model inspired by biological neural networks. They are composed of layers of interconnected nodes, or artificial neurons, that process and transmit information using weighted inputs. They are measured in this test to assess the understanding of fundamental concepts in deep learning.
Data Normalization: Data normalization is a technique used to standardize the range of data values. It involves transforming the data to have a consistent scale, typically between 0 and 1. This skill is measured in this test to evaluate the ability to preprocess data effectively, which is crucial for training accurate neural networks.
Cost Functions and Activation Functions: Cost functions are used to measure the difference between predicted and actual values in a neural network, guiding the learning process. Activation functions introduce non-linearity to the output of each neuron in a neural network, enabling complex computations. This skill is measured in this test to assess the knowledge of selecting appropriate cost and activation functions for different tasks.
Backpropagation: Backpropagation is a key algorithm for training neural networks. It calculates the gradients of the network's parameters with respect to the loss, allowing for the adjustment of weights in previous layers. This skill is measured in this test to gauge the understanding of how gradients propagate backward through a neural network for efficient learning.
Convolutional Neural Networks: Convolutional neural networks (CNNs) are deep learning models specifically designed for processing structured grid data, such as images. They are built on the idea of convolution, where filters scan and extract local patterns from input data. This skill is measured in this test to evaluate the knowledge of CNN architecture and its application in computer vision tasks.
Recurrent Neural Networks: Recurrent neural networks (RNNs) are neural networks that process variable-length sequential data, such as text or time-series. They have feedback connections that allow information to persist throughout the network. This skill is measured in this test to assess understanding of RNNs and their ability to model sequential patterns.
Generative Adversarial Networks: Generative adversarial networks (GANs) consist of two neural networks: a generator and a discriminator. They are trained together in a competitive process, where the generator aims to produce synthetic data that is indistinguishable from real data. This skill is measured in this test to evaluate knowledge of GAN architecture and its application in generating realistic data.
Natural Language Processing: Natural language processing (NLP) involves the interaction between computers and human language. It encompasses tasks such as speech recognition, text classification, and machine translation. This skill is measured in this test to assess the understanding of NLP techniques and their application in various language-related tasks.
Computer Vision: Computer vision is a branch of artificial intelligence that deals with interpreting visual information from images or videos. It involves tasks like object detection, image recognition, and image segmentation. This skill is measured in this test to evaluate the knowledge of computer vision algorithms and their application in solving visual perception problems.
Transfer Learning: Transfer learning refers to leveraging pre-trained models on one task to improve performance on another task. By utilizing knowledge gained from previous tasks, transfer learning can significantly reduce the amount of training data and time required. This skill is measured in this test to assess the understanding of transferring learned features from one domain to another.
Autoencoders: Autoencoders are neural networks designed to reconstruct the input data from a compressed representation, called the latent space. They are often used for unsupervised learning and dimensionality reduction. This skill is measured in this test to evaluate the knowledge of autoencoders and their application in tasks like data compression and anomaly detection.
Optimization Algorithms: Optimization algorithms play a crucial role in training neural networks by iteratively adjusting the model's parameters to minimize the training loss. Examples include stochastic gradient descent (SGD), Adam, and RMSprop. This skill is measured in this test to assess the familiarity with different optimization algorithms and their impact on network convergence and performance.