Search test library by skills or roles
โŒ˜ K

Computer Vision Test

The Computer Vision Test evaluates a candidate's knowledge and understanding of computer vision techniques, including deep learning and machine learning algorithms. It assesses skills in image recognition, object detection, image segmentation, and feature extraction.

Get started for free
Preview questions

Screen candidates with a 40 mins test

Test duration:  40 mins
Difficulty level:  Moderate
Availability:  Ready to use
Questions:
  • 7 Computer Vision MCQs
  • 3 Deep Learning MCQs
  • 3 Machine Learning MCQs
  • 3 Python MCQs
Covered skills:
Image Recognition
Object Detection
Image Segmentation
Feature Extraction
Convolutional Neural Networks
Neural Networks
Image Classification
Deep Learning
Machine Learning
Python
CV Frameworks
Get started for free
Preview questions

Use Adaface tests trusted by recruitment teams globally

Adaface is used by 1200+ businesses in 80 countries.

Adaface skill assessments measure on-the-job skills of candidates, providing employers with an accurate tool for screening potential hires.

Amazon Morgan Stanley Vodafone United Nations HCL PayPal Bosch WeWork Optimum Solutions Deloitte NCS Sokrati J&T Express Capegemini

Use the Computer Vision Assessment Test to shortlist qualified candidates

The Computer Vision Test helps recruiters and hiring managers identify qualified candidates from a pool of resumes, and helps in taking objective hiring decisions. It reduces the administrative overhead of interviewing too many candidates and saves time by filtering out unqualified candidates at the first step of the hiring process.

The test screens for the following skills that hiring managers look for in candidates:

  • Ability to perform image recognition tasks
  • Ability to detect objects in images
  • Ability to accurately segment images
  • Ability to extract features from images
  • Ability to work with convolutional neural networks (CNN)
  • Ability to build neural networks for computer vision tasks
  • Ability to classify images using machine learning techniques
  • Ability to apply deep learning principles to computer vision
  • Ability to apply machine learning algorithms to computer vision problems
  • Ability to code in Python for computer vision tasks
  • Knowledge of various computer vision frameworks
Get started for free
Preview questions

Screen candidates with the highest quality questions

We have a very high focus on the quality of questions that test for on-the-job skills. Every question is non-googleable and we have a very high bar for the level of subject matter experts we onboard to create these questions. We have crawlers to check if any of the questions are leaked online. If/ when a question gets leaked, we get an alert. We change the question for you & let you know.

How we design questions

These are just a small sample from our library of 15,000+ questions. The actual questions on this Computer Vision Test will be non-googleable.

๐Ÿง Question

Medium

Feature Fusion
Convolutional Neural Networks
Object Detection
Feature Extraction
Multi-Modal Learning
Solve
Consider a complex object detection scenario where an autonomous vehicle needs to detect pedestrians under challenging environmental conditions. You have access to three sensor modalities: RGB camera, thermal infrared, and depth sensor. Your goal is to design a multi-modal neural network architecture that can effectively fuse features from these different sensor inputs to improve pedestrian detection accuracy, particularly in low-visibility scenarios such as night-time or foggy conditions.

Given the following architectural considerations:

- Input dimensions: RGB (224x224x3), Thermal (224x224x1), Depth (224x224x1)
- Baseline single-modal mAP (mean Average Precision) for pedestrian detection:
    - RGB: 68.5%
    - Thermal: 72.3%
    - Depth: 59.7%

Which fusion strategy and network architecture would most likely provide the optimal performance improvement and feature representation?
A: Early Fusion CNN with concatenation of raw input channels followed by shared convolutional layers
B: Late Fusion Ensemble method using separate backbones with weighted majority voting
C: Squeeze-and-Excitation based fusion with channel-adaptive feature recalibration across modalities
D: Feature-level fusion with channel-wise adaptive attention and residual skip connections
E: Parallel multi-stream network with independent feature extractors and a cross-modal transformer fusion mechanism

Medium

Object Detection Models
Object detection
Evaluation metrics
Data augmentation
Solve
You trained a Faster R-CNN model on a custom object detection dataset that is both small and imbalanced. Some classes rarely appear, making fair evaluation challenging. You consider: (1) using data augmentation (e.g., random cropping, rotation, photometric distortions) to improve generalization, and (2) adopting class-weighted or specialized metrics to better measure performance on rare classes. Which approach simultaneously enhances generalization to new samples and ensures a more balanced, fair performance assessment across minority classes?
A: Using mAP as the sole evaluation metric
B: Employing weighted AP metrics to highlight minority classes
C: Applying random cropping, rotation, and distortions
D: Increasing anchor sizes only for frequent classes
E: Using Class Weighted IoU
F: Combining data augmentation with a class-weighted metric (e.g., Weighted AP)

Medium

Changed decision boundary
Solve
We have trained a model on a linearly separable training set to classify the data points into 2 sets (binary classification). Our intern recently labelled some new data points which are all correctly classified by the model. All of the new data points lie far away from the decision boundary. We added these new data points and re-trained our model- our decision boundary changed. Which of these models do you think we could be working with?
The 2 data sources use SQL Server and have a 3-character CompanyCode column. Both data sources contain an ORDER BY clause to sort the data by CompanyCode in ascending order. 

Teylor wants to make sure that the Merge Join transformation works without additional transformations. What would you recommend?
A: Perceptron
B: SVM
C: Logistic regression
D: Guassion discriminant analysis

Medium

CNN Architecture Tuning
Convolutional Neural Networks
Hyperparameter Optimization
Solve
You are fine-tuning a Convolutional Neural Network (CNN) for image classification. The network architecture is as follows:
 image
The model is trained using the following parameters:

- Batch size: 64
- Learning rate: 0.001
- Optimizer: Adam
- Loss function: Categorical cross-entropy

After several training epochs, you observe that the training accuracy is high, but the validation accuracy plateaus and is significantly lower. This suggests possible overfitting. Which of the following adjustments would most effectively mitigate this issue without overly compromising the model's performance?
A: Increase the batch size to 128
B: Add dropout layers with a dropout rate of 0.5 after each MaxPooling2D layer
C: Replace Adam optimizer with SGD (Stochastic Gradient Descent)
D: Decrease the number of filters in each Conv2D layer by half
E: Increase the learning rate to 0.01
F: Reduce the size of the Dense layer to 64 units

Medium

CNN for Imbalanced Image Dataset
Convolutional Neural Networks
Imbalanced Datasets
Solve
You are fine-tuning a Convolutional Neural Network (CNN) for an image classification task where the dataset is highly imbalanced. The majority class comprises 70% of the data. The initial model setup and subsequent experiments yield the following observations:

**Initial Setup:**

- CNN architecture: 6 convolutional layers with increasing filter sizes, followed by 2 fully connected layers.
- Activation function: ReLU
- No class-weighting or data augmentation.
- Results: High overall accuracy, but poor precision and recall for minority classes.

**Experiment 1:**

- Changes: Implement class-weighting to penalize mistakes on minority classes more heavily.
- Results: Improved precision and recall for minority classes, but overall accuracy slightly decreased.

**Experiment 2:**

- Changes: Add dropout layers with a rate of 0.5 after each convolutional layer.
- Results: Overall accuracy decreased, and no significant change in precision and recall for minority classes.

Given these outcomes, what is the most effective strategy to further improve the model's performance specifically for the minority classes without compromising the overall accuracy?
A: Increase the dropout rate to 0.7
B: Further fine-tune class-weighting parameters
C: Increase the number of filters in the convolutional layers
D: Add batch normalization layers after each convolutional layer
E: Use a different activation function like LeakyReLU
F: Implement more aggressive data augmentation on the minority class

Easy

Gradient descent optimization
Gradient Descent
Solve
You are working on a regression problem using a simple neural network. You want to optimize the model's weights using gradient descent with different learning rate schedules. Consider the following pseudo code for training the neural network:
 image
Which of the following learning rate schedules would most likely result in the fastest convergence without overshooting the optimal weights?

A: Constant learning rate of 0.01
B: Exponential decay with initial learning rate of 0.1 and decay rate of 0.99
C: Exponential decay with initial learning rate of 0.01 and decay rate of 0.99
D: Step decay with initial learning rate of 0.1 and decay rate of 0.5 every 100 epochs
E: Step decay with initial learning rate of 0.01 and decay rate of 0.5 every 100 epochs
F: Constant learning rate of 0.1

Medium

Less complex decision tree model
Model Complexity
Overfitting
Solve
You are given a dataset to solve a classification problem using a decision tree algorithm. You are concerned about overfitting and decide to implement pruning to control the model's complexity. Consider the following pseudo code for creating the decision tree model:
 image
Which of the following combinations of parameters would result in a less complex decision tree model, reducing the risk of overfitting?

A: max_depth=5, min_samples_split=2, min_samples_leaf=1
B: max_depth=None, min_samples_split=5, min_samples_leaf=5
C: max_depth=3, min_samples_split=2, min_samples_leaf=1
D: max_depth=None, min_samples_split=2, min_samples_leaf=1
E: max_depth=3, min_samples_split=10, min_samples_leaf=10
F; max_depth=5, min_samples_split=5, min_samples_leaf=5

Easy

n-gram generator
Solve
Our newest machine learning developer want to write a function to calculate the n-gram of any text. An N-gram means a sequence of N words. So for example, "black cats" is a 2-gram, "saw black cats" is a 3-gram etc. The 2-gram of the sentence "the big bad wolf fell down" would be [["the", "big"], ["big", "bad"], ["bad", "wolf"], ["wolf", "fell"], ["fell", "down"]]. Can you help them select the correct function for the same?
 image

Easy

Recommendation System Selection
Recommender Systems
Collaborative Filtering
Content-Based Filtering
Solve
You are tasked with building a recommendation system for a newly launched e-commerce website. Given that the website is new, there is not much user interaction data available. Also, the items in the catalog have rich descriptions. Based on these requirements, which type of recommendation system approach would be the most suitable for this task?

Easy

Sensitivity and Specificity
Confusion Matrix
Model Evaluation
Solve
You have trained a supervised learning model to classify customer reviews as either "positive" or "negative" based on a dataset with 10,000 samples and 35 features, including the review text, reviewer's name, and rating. The dataset is split into a 7,000-sample training set and a 3,000-sample test set.

After training the model, you evaluate its performance using a confusion matrix on the test set, which shows the following results:
 image
Based on the confusion matrix, what are the sensitivity and specificity of the model?

Medium

ZeroDivisionError and IndexError
Exceptions
Solve
What will the following Python code output?
 image

Medium

Session
File Handling
Dictionary
Solve
 image
The function high_sess should compute the highest number of events per session of each user in the database by reading a comma-separated value input file of session data. The result should be returned from the function as a dictionary. The first column of each line in the input file is expected to contain the userโ€™s name represented as a string. The second column is expected to contain an integer representing the events in a session. Here is an example input file:
Tony,10
Stark,12
Black,25
Your program should ignore a non-conforming line like this one.
Stark,3
Widow,6
Widow,14
The resulting return value for this file should be the following dictionary: { 'Stark':12, 'Black':25, 'Tony':10, 'Widow':14 }
What should replace the CODE TO FILL line to complete the function?
 image

Medium

Max Code
Arrays
Solve
Below are code lines to create a Python function. Ignoring indentation, what lines should be used and in what order for the following function to be complete:
 image

Medium

Recursive Function
Recursion
Dictionary
Lists
Solve
Consider the following Python code:
 image
In the above code, recursive_search is a function that takes a dictionary (data) and a target key (target) as arguments. It searches for the target key within the dictionary, which could potentially have nested dictionaries and lists as values, and returns the value associated with the target key. If the target key is not found, it returns None.

nested_dict is a dictionary that contains multiple levels of nested dictionaries and lists. The recursive_search function is then called with nested_dict as the data and 'target_key' as the target.

What will the output be after executing the above code?

Medium

Stacking problem
Stack
Linkedlist
Solve
What does the below function โ€˜funโ€™ does?
 image
A: Sum of digits of the number passed to fun.
B: Number of digits of the number passed to fun.
C: 0 if the number passed to fun is divisible by 10. 1 otherwise.
D: Sum of all digits number passed to fun except for the last digit.
๐Ÿง Question๐Ÿ”ง Skill

Medium

Feature Fusion
Convolutional Neural Networks
Object Detection
Feature Extraction
Multi-Modal Learning

2 mins

Computer Vision
Solve

Medium

Object Detection Models
Object detection
Evaluation metrics
Data augmentation

2 mins

Computer Vision
Solve

Medium

Changed decision boundary

2 mins

Deep Learning
Solve

Medium

CNN Architecture Tuning
Convolutional Neural Networks
Hyperparameter Optimization

3 mins

Deep Learning
Solve

Medium

CNN for Imbalanced Image Dataset
Convolutional Neural Networks
Imbalanced Datasets

3 mins

Deep Learning
Solve

Easy

Gradient descent optimization
Gradient Descent

2 mins

Machine Learning
Solve

Medium

Less complex decision tree model
Model Complexity
Overfitting

2 mins

Machine Learning
Solve

Easy

n-gram generator

2 mins

Machine Learning
Solve

Easy

Recommendation System Selection
Recommender Systems
Collaborative Filtering
Content-Based Filtering

2 mins

Machine Learning
Solve

Easy

Sensitivity and Specificity
Confusion Matrix
Model Evaluation

2 mins

Machine Learning
Solve

Medium

ZeroDivisionError and IndexError
Exceptions

2 mins

Python
Solve

Medium

Session
File Handling
Dictionary

2 mins

Python
Solve

Medium

Max Code
Arrays

2 mins

Python
Solve

Medium

Recursive Function
Recursion
Dictionary
Lists

3 mins

Python
Solve

Medium

Stacking problem
Stack
Linkedlist

4 mins

Python
Solve
๐Ÿง Question๐Ÿ”ง Skill๐Ÿ’ช DifficultyโŒ› Time
Feature Fusion
Convolutional Neural Networks
Object Detection
Feature Extraction
Multi-Modal Learning
Computer Vision
Medium2 mins
Solve
Object Detection Models
Object detection
Evaluation metrics
Data augmentation
Computer Vision
Medium2 mins
Solve
Changed decision boundary
Deep Learning
Medium2 mins
Solve
CNN Architecture Tuning
Convolutional Neural Networks
Hyperparameter Optimization
Deep Learning
Medium3 mins
Solve
CNN for Imbalanced Image Dataset
Convolutional Neural Networks
Imbalanced Datasets
Deep Learning
Medium3 mins
Solve
Gradient descent optimization
Gradient Descent
Machine Learning
Easy2 mins
Solve
Less complex decision tree model
Model Complexity
Overfitting
Machine Learning
Medium2 mins
Solve
n-gram generator
Machine Learning
Easy2 mins
Solve
Recommendation System Selection
Recommender Systems
Collaborative Filtering
Content-Based Filtering
Machine Learning
Easy2 mins
Solve
Sensitivity and Specificity
Confusion Matrix
Model Evaluation
Machine Learning
Easy2 mins
Solve
ZeroDivisionError and IndexError
Exceptions
Python
Medium2 mins
Solve
Session
File Handling
Dictionary
Python
Medium2 mins
Solve
Max Code
Arrays
Python
Medium2 mins
Solve
Recursive Function
Recursion
Dictionary
Lists
Python
Medium3 mins
Solve
Stacking problem
Stack
Linkedlist
Python
Medium4 mins
Solve

Test candidates on core Computer Vision Hiring Test topics

Image Recognition: Image recognition is the ability of a computer system to identify and classify objects or patterns in digital images. This skill is measured in the test to assess a candidate's understanding of the fundamental concepts and techniques used in image recognition, which is crucial for various tasks such as object identification, image search, and content analysis.

Object Detection: Object detection is a computer vision task that involves finding and localizing objects in images or videos. This skill is measured in the test to evaluate a candidate's knowledge of algorithms and methods used for detecting and locating objects, which is essential in applications like surveillance, autonomous vehicles, and image-based search systems.

Image Segmentation: Image segmentation is the process of partitioning an image into multiple regions or segments, with the goal of simplifying or analyzing the image's representation. Measuring this skill in the test allows recruiters to assess a candidate's ability to use techniques and algorithms for image segmentation, which plays a crucial role in applications like medical image analysis, object recognition, and image editing.

Feature Extraction: Feature extraction involves deriving meaningful information or features from raw data, such as images, to facilitate subsequent analysis or classification. This skill is measured in the test to evaluate a candidate's understanding of feature extraction techniques used in computer vision, which are crucial for tasks like object recognition, image matching, and pattern analysis.

Convolutional Neural Networks: Convolutional Neural Networks (CNNs) are deep learning models specifically designed for processing visual data, such as images. This skill is measured in the test to assess a candidate's knowledge of CNN architectures, as well as their ability to train and apply CNNs for tasks like image classification, object detection, and image segmentation.

Neural Networks: Neural networks are computational models inspired by the structure and function of the human brain, used for pattern recognition and machine learning tasks. Measuring this skill in the test allows recruiters to evaluate a candidate's understanding of neural network concepts and their ability to apply neural networks for solving computer vision problems.

Image Classification: Image classification is the task of assigning a label or category to an image based on its content. This skill is measured in the test to assess a candidate's knowledge of classification algorithms and techniques applied to images, which are essential for various applications like image search, content filtering, and automated image tagging.

Deep Learning: Deep learning is a subfield of machine learning that focuses on building and training artificial neural networks with multiple layers. Measuring this skill in the test allows recruiters to evaluate a candidate's understanding of deep learning principles and their ability to apply deep learning models to tasks like image recognition, object detection, and image generation.

Machine Learning: Machine learning is a branch of artificial intelligence that focuses on developing algorithms and models capable of learning from and making predictions or decisions based on data. This skill is measured in the test to assess a candidate's understanding of machine learning concepts and their ability to apply machine learning techniques to computer vision problems.

Python: Python is a popular programming language widely used in the field of computer vision and machine learning. Measuring this skill in the test allows recruiters to evaluate a candidate's proficiency in Python programming, as well as their ability to implement computer vision algorithms and models using Python libraries and frameworks.

CV Frameworks: CV frameworks, or computer vision frameworks, are software libraries or platforms that provide ready-to-use tools and functions for developing computer vision applications. This skill is measured in the test to assess a candidate's familiarity with popular CV frameworks like OpenCV, TensorFlow, or PyTorch, which are essential for rapid prototyping, algorithm implementation, and deployment of computer vision solutions.

Get started for free
Preview questions

Make informed decisions with actionable reports and benchmarks

View sample scorecard

Screen candidates in 3 easy steps

Pick a test from over 500+ tests

The Adaface test library features 500+ tests to enable you to test candidates on all popular skills- everything from programming languages, software frameworks, devops, logical reasoning, abstract reasoning, critical thinking, fluid intelligence, content marketing, talent acquisition, customer service, accounting, product management, sales and more.

Invite your candidates with 2-clicks

Make informed hiring decisions

Get started for free
Preview questions

Try the most advanced candidate assessment platform

ChatGPT Protection

Non-googleable Questions

Web Proctoring

IP Proctoring

Webcam Proctoring

MCQ Questions

Coding Questions

Typing Questions

Personality Questions

Custom Questions

Ready-to-use Tests

Custom Tests

Custom Branding

Bulk Invites

Public Links

ATS Integrations

Multiple Question Sets

Custom API integrations

Role-based Access

Priority Support

GDPR Compliance


Pick a plan based on your hiring needs

The most advanced candidate screening platform.
14-day free trial. No credit card required.

From
$15
per month (paid annually)
love bonito

With Adaface, we were able to optimise our initial screening process by upwards of 75%, freeing up precious time for both hiring managers and our talent acquisition team alike!

Brandon Lee, Head of People, Love, Bonito

Brandon
love bonito

It's very easy to share assessments with candidates and for candidates to use. We get good feedback from candidates about completing the tests. Adaface are very responsive and friendly to deal with.

Kirsty Wood, Human Resources, WillyWeather

Brandon
love bonito

We were able to close 106 positions in a record time of 45 days! Adaface enables us to conduct aptitude and psychometric assessments seamlessly. My hiring managers have never been happier with the quality of candidates shortlisted.

Amit Kataria, CHRO, Hanu

Brandon
love bonito

We evaluated several of their competitors and found Adaface to be the most compelling. Great library of questions that are designed to test for fit rather than memorization of algorithms.

Swayam Narain, CTO, Affable

Brandon

Have questions about the Computer Vision Hiring Test?

What roles can I use the Computer Vision Assessment Test for?

Here are few roles for which we recommend this test:

  • Computer Vision Engineer
  • Machine Learning Engineer
  • AI Researcher
  • Data Scientist
  • Software Developer
  • Data Analyst
  • Image Processing Engineer
  • Research Scientist
  • Computer Vision Consultant
  • Data Engineer
Can I combine Computer Vision Test with Deep Learning questions?

Yes, recruiters can request a custom test that includes Deep Learning questions. For more details on how we assess deep learning skills, you can refer to the Deep Learning Test.

How to use the Computer Vision Test in my hiring process?

Use this test as a pre-screening tool early in your recruitment process. Include the test link in job posts or invite candidates by email. This helps identify skilled candidates efficiently.

What are the main Computer Vision tests?
Do you have any anti-cheating or proctoring features in place?

We have the following anti-cheating features in place:

  • Non-googleable questions
  • IP proctoring
  • Screen proctoring
  • Web proctoring
  • Webcam proctoring
  • Plagiarism detection
  • Secure browser
  • Copy paste protection

Read more about the proctoring features.

What experience level can I use this test for?

Each Adaface assessment is customized to your job description/ ideal candidate persona (our subject matter experts will pick the right questions for your assessment from our library of 10000+ questions). This assessment can be customized for any experience level.

I'm a candidate. Can I try a practice test?

No. Unfortunately, we do not support practice tests at the moment. However, you can use our sample questions for practice.

Can I get a free trial?

Yes, you can sign up for free and preview this test.

What is the Computer Vision Test?

The Computer Vision Test evaluates proficiency in computer vision skills. It is used by recruiters to assess candidates' abilities in image recognition, object detection, and other computer vision tasks.

What kind of questions are used to evaluate senior candidates in the Computer Vision Test?

The test assesses senior candidates on image classification, deep learning concepts, machine learning algorithms, and proficiency with computer vision frameworks.

Can I test Machine Learning and Computer Vision together in a test?

Yes, you can test both Machine Learning and Computer Vision together. This is recommended for comprehensive candidate evaluation. Check out our Machine Learning Assessment Test.

Can I combine multiple skills into one custom assessment?

Yes, absolutely. Custom assessments are set up based on your job description, and will include questions on all must-have skills you specify. Here's a quick guide on how you can request a custom test.

How do I interpret test scores?

The primary thing to keep in mind is that an assessment is an elimination tool, not a selection tool. A skills assessment is optimized to help you eliminate candidates who are not technically qualified for the role, it is not optimized to help you find the best candidate for the role. So the ideal way to use an assessment is to decide a threshold score (typically 55%, we help you benchmark) and invite all candidates who score above the threshold for the next rounds of interview.

Does every candidate get the same questions?

Yes, it makes it much easier for you to compare candidates. Options for MCQ questions and the order of questions are randomized. We have anti-cheating/ proctoring features in place. In our enterprise plan, we also have the option to create multiple versions of the same assessment with questions of similar difficulty levels.

What is the cost of using this test?

You can check out our pricing plans.

I just moved to a paid plan. How can I request a custom assessment?

Here is a quick guide on how to request a custom assessment on Adaface.

customers across world
Join 1200+ companies in 80+ countries.
Try the most candidate friendly skills assessment tool today.
g2 badges
Ready to use the Adaface Computer Vision Test?
Ready to use the Adaface Computer Vision Test?
logo
40 min tests.
No trick questions.
Accurate shortlisting.
Terms Privacy Trust Guide
ada
Ada
โ— Online
Previous
Score: NA
Next
โœ–๏ธ